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STATISTICS AS A MATHEMATICAL DISCIPLINE 

D. V. Lindley 

(This paper is a revised version of a lecture given to a general 

mathematical audience at the First Australasian Mathematical Convention 

held in Christchurch, 15-19 May 1978.  The revision consists of increas- 

ing the interpretative remarks at the cost of more mathematical ones; 

the judgment being that these will be of more interest to the readers 

of this journal. The example which concluded the lecture has been 

replaced by a different one, though emphasizing the same point, because 

the problem with which it deals has been discussed recently in Australasia, 

in particular by Davies (1978) at the conference.  The example originally 

given in the lecture has appeared in Lindley and Phillips (1976).  I am 

grateful for the award of an Erskine Fellowship by the University of 

Canterbury which enabled me to attend the convention and profit from a 

stay on the campus.) 



STATISTICS AS A MATHEMATICAL DISCIPLINE 

D. V. Lindley 

1.  The Axioms of Statistics. 

Mathematicians who study statistics, perhaps through having to give 

a course on it, are nearly always surprised by what they find.  (Actually 

"surprise" is perhaps the politest term used:  the adjective is often 

derogatory.)  This is reasonable, because they do not find a discipline 

akin to what they are used to in other branches of mathematics.  They do 

not find a system that starts from fundamental notions incorporated in 

axioms, proceeding through definitions to theorems expressing important 

results in the field.  Instead they find a collection of loosely related 

techniques, such as confidence intervals, significance tests; and a 

resulting confusion about what to do in any particular case.  The purpose 

of this paper is to show that statistics can be regarded as a formal, 

mathematical system, like Euclidean geometry, so that mathematicians need 

no longer be "surprised". 

Of course, I am not advocating this formalism just to keep mathemati- 

cians happy.  That is a worthy objective, but not as important as the 

consideration that the mathematical method (if I can call it that, without 

being too precise about what is meant) works extremely well, and it is 

reasonable to expect advantages from applying it to statistical problems. 

With that method we know exactly what is true and what is false.  In any 

problem we know what to do - in Newtonian mechanics write down the equa- 

tions of motion - and thought can be concentrated on how to do it.  Indeed, 



the main advantage of this approach to statistics is that it gives prac- 

tically useful results and is of just as much interest to the practitioner 

of statistics as to the mathematical statistician.  We shall also look at 

an exciting theorem that is of great practical importance. 

We begin, like Euclidean geometry, with the axioms.  There is naturally 

freedom of choice here, but I shall take a system used by DeGroot (1970) in 

his excellent text.  First it is necessary to say what is under discussion: 

the equivalent of the "points" and "lines" of geometry.  In statistics we 

refer to events and we try to capture feelings of uncertainty that we have 

about events. For example, the event that a treatment will increase the 

yield.  Statistical inference is a way of handling uncertainty.  The events 

are denoted A, B, C, ... and they will be supposed to form a a-field in a 

space S.  This restriction merely means that the events can always be 

combined, to form a new event, in the usual ways. Our first axiom intro- 

duces the relation "not more likely than" between events, and is written 

<. 

Al:  For any two events A, B; either A < B,  B <  A or both. 

This says that any two events can be compared.  In the usual way we obtain 

A ~ B,  A and B are equally likely, and A •< B, A is less likely than 

B. The second axiom shows what happens to the relation when events are 

combined in certain ways. 

A2:  If AnA0 = BnB„ = cj> and A., <   B.  (1=1, 2)  then  UA. <UB... 

Furthermore A. -< B,  and A„ <  B„ imply UA. <  UB . 
i     1        2.   ~ 2. J~ 1 

Here two events are each broken up into component events:  if the compon- 

ents of one event are not more likely than the components of the other, 

then the same relation holds between the original events.  It is easy to 



deduce that these two axioms imply transitivity, namely A -< B and 

B < C imply A -< C, and this may be taken as an axiom if preferred 

though it is weaker than the present one. 

Other axioms follow, but these two are the. key ones and it is worth 

making a few comments on them.  First, the axioms are normative, not des- 

criptive;  that is, they refer to a norm or standard of behavior that you 

would like to achieve if you knew how; they do not describe your abilities 

at the moment.  The task of statistics is to provide a satisfactory way of 

measuring uncertainty; the suggestion is that such measurements would obey 

the two requirements so far set out.  Without statistics you may not be 

able to effect the required comparisons of events.  Second, the axioms can 

be given an operational test in terms of bets: A •< B if a bet to win 

when B is true is preferred to a bet to win the same amount when A is 

true. This operational interpretation is important in order that the 

system can be used. Without it the system remains pure mathematics. 

The third axiom relates -<  to the concept of inclusion, or impli- 

cation, for events: 

A3: <j> -<  A and <|> -< S. 

A consequence of this is that A c B implies A «< B:  if A implies 

B, then A is not more likely than B. 

The fourth axiom is a matter of some contention.  It is introduced 

in order to extend the concepts of the first three axioms from finite 

collections of events to enumerable collections.  It is possible to 

dispense with it, but it is certainly simpler to include it. 

A4:  If A 3 A :D ...  and A. > B for all i, then OA. >• B. 

In words, if events get more and more restrictive but are never less 

likely than B, then the total restriction is not less likely than B. 

In technical language, this leads to a-additivity. 



Our object is to measure uncertainty; that is, to associate with 

each event a number describing that uncertainty.  It had been conjectured 

that these four axioms would be enough to do this, but a counterexample 

showed that this was not so.  They have therefore to be strengthened. 

There are various ways of doing this, but all of them essentially amount 

to introducing a standard of uncertainty to which all events can be 

referred.  Indeed, in any measurement process, say of length or mass, 

measurement is always with respect to a standard; so it is by no means 

unusual to introduce the same concept in connection with uncertainty. 

It is simplest to invoke a strong standard that brings continuity along 

with it. This we do by supposing the G-field contains the Borel sets of 

the unit interval [0, 1] of the real line and presume: 

A5:  There exists a uniform probability distribution in  [0, 1], 

This is our standard.  By a uniform distribution is meant an assignment 

of uncertainty such that if I., and I„ are any two intervals in [0, 1] 

of equal length then they are judged equally likely,  I- ~ I_. 

It is now a straightforward matter to use a Dedekind-type of argument 

to show that for any A, there exists an interval I, only the length of 

which matters, such that A ~ I.  With each A is associated a number, 

equal to the length of the corresponding I and called the probability 

of A. Furthermore it can be shown that these numbers obey the usual 

laws of probability discussed below, and therefore are entitled to the 

name probability. These probabilities are written p(A|s) - read "the 

probability of A given S" - since they depend on S as well as the 

uncertain event under consideration.  An example will demonstrate the 

truth of this latter point.  Suppose S contains the  (n+1)  integers 



(0, 1, 2, ..., n) corresponding to the number of heads in n tosses of 

a coin: then your probability of A, exactly 2 heads, will be altered 

if S is restricted to include only the even integers. 

Our final axiom is concerned with such a restriction of S to a 

subset C say, with C >- <j>. We introduce a notion of A is not more 

likely than B, given C and write  (A|C) •< (B|C), the original form 

obtaining when C=S. These ordering relations are connected with the 

original ordering by 

A6:  For any A,B and C, C > cj>,  (A|c) <   (B|c)  iff AC <   BC. 

The motivation behind this assumption is best explained in terms of the 

operational bets referred to above.  Suppose that you are contemplating 

a bet which will only take place if C occurs and then gives a reward 

only if A does, and are comparing it with a second bet under the same 

conditions except that the reward hinges on B. Then the rewards will 

only arise if A and C, or B and C, both occur.  Consequently the 

relevant uncertainties concern AC and BC. The bets are "called-off" 

if C does not occur, so this is sometimes referred to as the axiom of 

called-off bets. 

These six axioms complete the system and from them it is possible 

to prove the basic 

Theorem: Al - A6 imply that there exists a unique probability dis- 

tribution p(A|B)  for all A, and all B > <f>, such that  (A|C) < (B|C) 

iff P(A|C) < P(B|C). 

By a probability distribution is meant an assignment of numbers, 

written P(A|B), to all events A, and all events B with p(B|S) > 0 

such that 



PI:  p(A|A) = 1 and 0' <_ p(A|B) <  1. (Convexity) 

P2:  If {A :  i=l, 2, ...} are exclusive, A.A. = <j) for all unequal 

i,j,  then p(UA |B) = Zp(A±|B).  (Additivity) 

P3:  p(AB|c) = p(A|c) P(B|AC).  (Multiplicativity) 

(The three properties are often described by the names given in brackets.) 

2.  The Likelihood Principle 

In words, the theorem says that an appreciation of uncertainty within 

the framework of the axioms Al - A6 is only possible through the notion of 

probability: uncertainty can only be described probabilistically.  To 

use any other method that is not equivalent to a probability calculus will 

lead to violation of one of the axioms. Would you wish to do that? This 

is a striking result since, as we shall see below, statisticians do use 

other methods and get into difficulties as a result.  Since the proof of 

the theorem is simple, the only objection to the approach can be in the 

axioms: are they satisfactory? The one that is most obviously open to 

attack is A4 with its possibly infinite set of events; but if it is omitted 

PI - P3 remain except that in P2 the events can only be finite in number 

and the probability is finitely-, and not a-, additive.  This leads to 

difficulties:  for example, the marginalization paradoxes of Dawid, Stone 

and Zidek (1973). Another reason for thinking that the system is satis- 

factory is that it is possible to approach the topic of uncertainty in 

other ways and still end up with PI - P3 or variants thereof. We cite 

the work of DeFinetti (1974). More modest approaches that deal with 

special systems lead to the likelihood principle that we will discuss 

below:  see, for example, Birnbaum (1962) or Basu (1975). Another aspect 

of this approach to uncertainty is through bets, as already mentioned. 



It is possible to show that any measurement of uncertainty that can be 

used as a basis for bets and is not probabilistic results in a Dutch 

book:  that is a combination of bets that will lose you money for sure, 

whatever happens.  Dutch books can be made for most statistical practices. 

The argument is like that used in other branches of mathematics. 

Furthermore it is operational.  One can test people by means of bets to 

see if they react in the way the results require:  it is good applied, 

as well as pure, mathematics.  Furthermore we are now in a position to 

prove other theorems and can test these against practical experience. 

One such theorem is Bayes theorem which says that whenever the prob- 

abilities exist p(B.|AC) a P(A|B.C) p(B. |c)  for i=l, 2, ..., the 

omitted constant of proportionality not depending on i.  This theorem 

plays such an important role in modern statistics that methodology based 

on the axioms is often called Bayesian statistics.  It is better to refer 

to the axioms as those of coherence because they typically deal with how 

judgments of uncertainty get together, or cohere; so that perhaps the 

appropriate description is coherent statistics.  But Bayes theorem does 

have an astonishing consequence for statistics that we now explore. 

In statistical problems  S is a product space X x 9 of elements 

(x,6).  (For simplicity we will describe the situation where S is 

enumerable. The results generalize to more general classes of spaces.) 

The quantity x is referred to as the data and 6 as the parameter. 

The probabilities, given S, are most easily described by a density 

p(x,8), never negative and with £ „ p(x,6) = 1.  Then p(A|S) 

= E(x 6)PA p(x,6)  and generally p(A|B)  is p(AB|S)/p(B|S) by P3. 

In particular p(6) = E p(x,6)  and p(x|9) = p(x,e)/p(9) 



provided p(8) ^ 0, which will henceforth be supposed true.  (Conventional 

statistics would admit p(x|9) but not p(8).)  The point of writing S 

in this way is that the statistician observes the value of x, but not of 

0, and wishes to express his uncertainty about 6 in the light of the 

observation.  Bayes theorem allows him to calculate this as 

p(8|x) oc p(x|e) P(6) 

the constant not involving  9.  (In fact it is p(x)  .) 

At this point we had better improve on our rather sloppy notation 

in order to emphasize the nature of the last result.  Bayes theorem would 

better be written 

Pe(*|x) = Px(x|-) pe(«) 

to emphasize the fact that x is known and that the functions are all 

functions of  6.  The first and last of the three functions are clearly 

probability densities, never negative and adding to 1 (£fl p.(8|x) 

= ^Q Pfl(®) = -*-•)  •^ie otner> p (x|*), is nonnegative but does not typi- 

cally add to 1:  it is not a probability (as a function of  8) and is 

termed the likelihood of 8, given x.  In words the above result is 

described by saying that the probability of 0 given x is propor- 

tional to the product of the likelihood of 8 given x and the prob- 

ability of 8 prior to x.  We have proved the following 

Theorem.  The uncertainty about 8, given x, depends on x only 

through the likelihood function p (x|•). 

Expressed differently, if two data values, x,  and x , have the 

same likelihood, then the uncertainty about 8, given x, is the same 



as that given x_.  Or, in another form, the likelihood function is a 

sufficient statistic.  It is often referred to as the likelihood 

principle. 

This is a surprising result. To appreciate the reason for the 

astonishment, recall that it has been proved on the basis of some 

reasonable axioms about uncertainty, so should reasonably apply in 

practical situations of uncertainty.  In fact, almost all methods used 

in statistics violate the principle.  It is easy to see this since the 

only probability admitted in sampling theory statistics is p (*|6) for 

each G and the procedures used involve integrals over x-values. For 

p (x|0)dx = a over the rejection 
R X 

t(x) p (x|8)dx = 6 for all 0.  In both cases, 

example, a significance test has 

region R for values of 6 constituting the null hypothesis; an unbiased 

estimate t(x) employs 

as in others, values of x besides that observed are used, so violating 

the likelihood principle. The method of maximum likelihood is an obvious 

exception, but that is unsatisfactory for a different reason that will 

appear below. 

We now have a wonderful way of testing the ideas developed in this 

paper. According to Popper, a theory is valuable if several testable 

results can be deduced from it. And the theory fails as soon as a test 

fails. Our ideas are certainly valuable in this sense because all the 

results of the rich, probability calculus are available. And here we 

have a test: which ideas are better, those based on the likelihood 

principle, or those on conventional statistics? There is no room here 

to explore this question generally, so we confine ourselves to an 

example. 



3.  Inference for a Galton-Watson Process 

Let us explore the likelihood principle in a situation that is of 

current research interest.  Consider a Galton-Watson process in which 

at each generation, each individual alive then gives rise, independently 

of all other individuals, to a number r of offspring which constitute 

the next generation.  Suppose that the probability density for r is 

the same for all individuals and is known up to an unknown parameter 

6; write it p (r|6). For simplicity suppose r is never zero so that 

extinction is not possible:  the conclusion is unaffected if this res- 

triction is removed.  Since our object is to illustrate the differences 

between the likelihood approach and sampling theory ideas, and not to 

carry out detailed calculations, let us specialize to the case of the 

geometric distribution with p (r|8) = (1-6)9    for r >_ 1 and 

0 < 6 < 1. 

Now suppose the process is observed for N generations starting 

with a single individual in the first generation. Let the numbers of 

offspring observed be r _  from that first generation individual, 

r„.. , r _, ..., r?    from the r11  at the second generation; and so 

on up to r _, r ?, ..., r^„    where S is the total at the (N-l)- 

generation. The probability for this data set x = (r-,: r.-, roo» 

• • •» ^o— • ro-i» • • • • rvr-i» • • •» r o^ is clearly 

rirx       r2i~1       r22_1 r2rn~        r3i~x 

(1-0)0 xx       (1-6)9 ZX       (1-0)0 ZZ       ...   (1-9)9     . (1-9)9 JX 

...   (l-0)0rNS_1 

A-i JSrt-r1 
or simply (1-0)    0 where R  is the total number of 

individuals up to and including the i  generation. Essentially each 

10 



parent contributes a term (1-6)/9; each offspring a term 6.  The total 

th number of parents is R, 1  (the parenthood of those at the N   genera- 

tion is not observed) and of offspring Rvr""l> since the original individual 

was not observed as an offspring.  This is the likelihood function, and 

according to the likelihood principle no other aspect of the data is rele- 

vant to the uncertainty about 8 and (R^, R^ 1) is a sufficient statistic. 

(Notice it does not involve N, the number of generations.) 

Another, more interesting, feature of the likelihood is that it is 

the same as that for a random sample of size R^ ,  from the geometric 

distribution that yields a sum R^-l- To see this, note that a random 

sample of size n with values r,, r_, ..., r  gives a likelihood 

n E(ri-1) 12 
(1-0) 8      : writing n = &»-,_••  and Er. = RK-,-1 gives the result. 

Consequently we have two data sets (x..  and x„ in an earlier notation) 

which have the same likelihood function and therefore for which the uncer- 

tainties about 8 should be the same according to the principle:  one 

data set observes for a fixed number N of generations, the other observes 

for a fixed sample size n. Now the latter situation is standard in the 

statistical literature and, for example, the maximum likelihood estimate 

of 8, £(r.-l)/£r., is asymptotically normal with mean equal to the true 

2 
value of 9 and variance 8(1-6) /n, the latter being obtained from the 

inverse of the expectation of minus the second derivative of the log- 

likelihood. According to the likelihood principle the same asymptotic 

inference as stated in the last sentence should be available for the 

original case of fixed generation number.  Is this so? 

The maximum likelihood example remains as before; in the changed 

notation it is  (R^-R^ _-l)/(R^-l); but the variance is altered because 

11 



the expectation, which previously treated n as fixed and only Er.  as 

random, now has both these quantities, involving R  and RN_1» as random. 

Detailed calculation shows that the expectation of minus the second deri- 

vative of the log-likelihood when inverted gives  (1-6)  9 /{l-(l-8) }, 

N 2 
or asymptotically  (1-6)  8 , of quite different form from the earlier 

2 
expression 6(1-6) /n.  Consequently the likelihood principle is in 

direct conflict with conventional statistical practice that uses a 

sampling variance to judge the imprecision of an estimate. The reason 

is not hard to see.  The computation of the variance involves an integra- 

tion of p (x|6)  over a suitable space which is different according to 

whether the generation number N or the number n of parents is fixed. 

The reader can judge for himself which seems sensible, remembering that 

if he favours the sampling-variance approach he is somewhere violating 

one of the axioms described above.  For my part, the likelihood approach 

seems clearly correct: we have here IL. ..  parents independently pro- 

ducing offspring, why should it matter that R^ .  is random or fixed? 

Another related difficulty with the sampling-theoretic approach is that 

in many cases it is hard to be sure what the relevant space for integra- 

tion is.  For example, suppose the N generations had been observed but 

that some parents had left the system during the period of observation 

so that there was no knowledge about their offspring. The likelihood 

P 0-P 
remains (1-8) 8    where P and Q are respectively the number of 

parents and the number of offspring.  In the original case of complete 

observations it is particularly curious to fix N since it is not even 

part of the sufficient statistic. 

12 



In this paper we have shown that it is possible to present statistics 

within the framework of a simple axiom-system capturing the concept of 

uncertainty; that this system leads to the result that uncertainty must 

be described probabilistically; that one probability result, Bayes theorem, 

leads to the likelihood principle, and that this principle is in direct 

conflict with statistical practice.  We therefore have a piece of theory 

that cannot be ignored by the most applied of statisticians because it 

strongly affects practice. 

13 
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